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We discuss the roles of the macroscopic limit and different system-environment interactions in a quantum-
classical transition for a chaotic system. We consider the kicked harmonic oscillator subject to reservoirs that
correspond in the classical case to purely dissipative or purely diffusive behavior, a situation that can be
implemented in ion trap experiments. In the dissipative case, we derive an expression for the time at which
quantum and classical predictions become different(breaking time) and show that complete quantum-classical
correspondence is not possible in the chaotic regime. For the diffusive environment we estimate the minimum
value of the diffusion coefficient necessary to retrieve the classical limit and also show numerical evidence
that, for diffusion below this threshold, the breaking time behaves, essentially, like that in the case of a system
without a reservoir.
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I. INTRODUCTION

The problem of understanding the classical world from
quantum theory is subtle and especially challenging when
dealing with classically chaotic systems.

Even the definition of classical chaos cannot be directly
translated into quantum mechanics. Exponential sensitivity
to initial conditions, used to define classical chaos, relies on
the concept of individual trajectories in phase space, which is
absent in quantum formalism. The use of classical phase
space distributions, instead of trajectories, seems to be the
way in which to circumvent this problem, since they can be
readily compared with quasiprobability distributions defined
for the corresponding quantum system.

One expects, however, that the dynamics of the quantum
and the corresponding classical system should differ after
some time, even if the initial distributions coincide. This
time, often called Ehrenfest time or breaking time, while
large for integrable systems, can be very short for chaotic
systems. In that case it has been shown[1] to be proportional
to the logarithm of the inverse of an effective Planck con-
stant,"eff, which is the ratio between the Planck constant and
a typical action of the system. For integrable systems, on the
other hand, it scales as an inverse power of"eff. In fact,
quantum corrections become important when the distribution
is able to explore the nonlinearities of the potential, which
can occur on a logarithmic time scale due to the exponen-
tially fast stretching of the distribution imposed by chaotic
dynamics.

One way to face this problem is to go to the macroscopic
limit, namely, "eff→0, which results in an infinite breaking
time t". Nevertheless, for any physical system,"eff is not
zero and thereforet" has a finite value which can be short,
even for macroscopic systems. It has been argued that, due to
the shortness of the separation time, even components of the
solar system would exhibit quantum features, which is in
contradiction with observation[2,3].

Reconciliation of quantum and classical predictions in
this case is provided by irreversible coupling of the system

with an environment[4–6], which leads to elimination of the
quantum signatures, so that quantum and classical evolutions
remain alike. In systems that, when isolated, exhibit dynami-
cal localization, it was shown[7–10] that noise and dissipa-
tion can strongly alter the situation and under certain condi-
tions restore classical-like momentum diffusion. For
particular choices of environment, it has also been shown
that this reconciliation is possible under some conditions that
involve a scaling relation for the effective Planck constant,
the nonlinearity parameter and the strength of the system–
reservoir interaction[7,10–15].

One of the aims of this paper is to further explore the joint
role of the macroscopic limits"eff!1d and interaction with
the environment in the quantum-classical correspondence. In
particular, we are also interested in regions where the condi-
tions for classicality do not hold and examine the time scales
at which the quantum-classical correspondence breaks down.
We should emphasize that this time scale is different from
the one in the localization problem studied in Refs.[7–10]
since this phenomenom can be absent in the model we con-
sider [16]. Another goal of this paper is to analyze in detail
the impact of different forms of the system-environment cou-
pling within the framework of a model that can be imple-
mented experimentally.

To do this, we revisit the kicked harmonic oscillator
sKHOd, which has been the subject of studies both in classi-
cal [17] and quantum descriptions[16,18,19]. Despite some
peculiarities and numerical difficulties presented by the
KHO, the possibilities for implementation with current avail-
able technology for ion traps[20] turn this model into a very
attractive one. Moreover, in ion traps, one is able to create
artificial reservoirs [21] and different kinds of system–
environment interactions have already been produced experi-
mentally [22]. This favorable scenario becomes complete
with the possibility of tuning the effective Planck constant by
changing experimentally accessible parameters."eff and its
scaling properties are related to the so-called Lamb–Dicke
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parameter(defined later in this paper), which can be modi-
fied either by changing the trap frequency or the directions of
the laser beams that interact with the ion.

We analyze two limiting cases of environment coupling:
zero temperature, which leads in the classical limit to dissi-
pation without diffusion, and a reservoir that leads to diffu-
sion without dissipation. This is not an unrealistic situation:
the first may be mimicked by the sideband cooling mecha-
nism in ion traps, under proper conditions, while the second
corresponds to white-noise position-independent random
force, coupled to the oscillator. The latter of the two is
known to be the most important source of decoherence in
actual experiments[22]. We present analytical and numerical
results concerning the “distance” between quantum and clas-
sical predictions and the breaking time. More specifically, in
the dissipative case, expressions for the breaking time in
three different parameter regions are derived and their physi-
cal consequences are discussed. In the most interesting re-
gion, we have a result similar to the one obtained recently by
Iomin and Zaslavsky[23] using another method. For the dif-
fusive environment we establish the minimum value of the
diffusive constant in order to restore classical predictions,
and we provide numerical evidence that the breaking time
behaves like the one for the system without a reservoir if the
diffusion constant is kept below this threshold. We also show
that the purely diffusive reservoir has a much stronger im-
pact on the quantum-classical correspondence than the dissi-
pative one.

In Sec. II we present the main features of the classical
model, both in the absence and the presence of coupling with
the environment. In Sec. III, we introduce the quantum
model, and discuss its connection with experimental realiza-
tion in ion traps and with the corresponding classical model.
Section IV is divided into three parts that show the results for
the system without a reservoir or one that interacts with dis-
sipative or diffusive reservoirs. Appendices A and B contain
detailed derivations of some of the results presented in the
body of the text.

II. CLASSICAL DYNAMICS: THE d-KICKED
HARMONIC OSCILLATOR

The classicald-kicked harmonic oscillator has been stud-
ied for both isolated[24] (without a reservoir) and dissipa-
tive [25] cases. Here we review the basics features of these
models and present also the effects of interaction with a dif-
fusive environment.

A. System without a reservoir

We consider a particle of massm in a harmonic potential
subjected to a sequence of periodically appliedd-like pulses.
The Hamiltonian that describes this situation is

H =
p2

2m
+

mn2x2

2
+ A cosskxdo

n

`

dst − ntd, s1d

where n is the oscillator frequency,t the interval between
two consecutive kicks andA their amplitude. The kicking

potential is position dependent, with periodicity given by the
wave vectork.

The differential equations of motion due to this Hamil-
tonian can be replaced by a discrete map. Between two kicks
the system evolves according to

ẍ + n2x = 0, s2d

while at kicking timesnt there is just a shift in momentum,
so that

xn
+ = xn, pn

+ = pn + Ak sinskxd, s3d

where the variables immediately after and before a kick are
indicated, respectively, by the presence or absence of the “+”
superscript. After this integration we can connect the solu-
tions before each kick using the following map:

xn+1 = cossntdxn + sinsntd/mnfpn + Aksinskxndg, s4ad

pn+1 = − mn sinsntdxn + cossntdfpn + Aksinskxndg. s4bd

Using dimensionless variablesv andu defined by

v = kx,

u = kp/mn, s5d

the map becomes

vn+1 = cossadvn + sinsadfun + K sinsvndg, s6ad

un+1 = − sinsadvn + cossadfun + K sinsvndg, s6bd

whereK=Ak2/mn anda=nt are, respectively, the renormal-
ized kicking strength and the ratio between the period of the
kicks and the period of the oscillator. The system’s phase
space is unbounded and mixed, and exhibits stable islands
surrounded by a stochastic web along which the system dif-
fuses. The web is characterized by its thickness that broadens
(shrinks) as the value of the chaoticity parameterK increases
(decreases). For a=2p /q (q is an integer), the stochastic
web displays crystalsqPqc;h3,4,6jd, or quasicrystal sym-
metry sqÞqcd. These basic features can be seen in Fig. 1,
where a stroboscopic plot for the map Eqs.(6), is shown for
q=6 andK=2.0 for different initial conditions.

Another useful way in which to study the dynamics is to
follow the time evolution of the phase-space probability dis-
tribution. This method is especially suitable for problems
where the notion of a single deterministic trajectory is absent
as in the case of noisy and quantum dynamics. For numerical
evaluation of the density dynamics, one usually evolves an
ensemble of trajectories generated according to the initial
distribution and then, by counting the fraction of trajectories
that lies in each cell of phase space, one recovers the density
at a given time. However, this method presents some draw-
backs in our case, due to the unboundedness of the phase
space and the consequent escape of trajectories. One way to
get rid of this problem is to extend the phase space bound-
aries to be sure that, for the time scale one wants to simulate,
no trajectories are lost. Nevertheless, increase of the phase
space area, keeping the size of the cells constant, requires a
larger number of trajectories in order to get good statistics.

CARVALHO, DE MATOS FILHO, AND DAVIDOVICH PHYSICAL REVIEW E 70, 026211(2004)

026211-2



This imposes severe constraints on efficient numerical imple-
mentation.

Alternatively, we start with a uniformly distributed en-
semble of trajectories, each carrying its own weight relative
to the initial distribution. According to this, the probability at
each point is obtained by requiring that

Pnsvn,und = P0sv0,u0d, s7d

which means that the value of the initial probability,P0 at
every point(v0, u0) in phase space is transported to the image
(vn, un) of this point under action of the map Eqs.(6), aftern
iterations. All the classical quantities calculated throughout
the paper are obtained by evaluating each individual trajec-
tory and then averaging them, taking into account their re-
spective probabilities. It is important to mention that, al-
though differences between trajectory-based and true density
evolutions are expected[26,27], our simulations show no
difference between the two methods for sufficiently small
phase-space partitions.

Figure 2 displays the evolution of an initial Gaussian
probability distribution centered at the origin for the same
parameters of Fig. 1. The numerical procedure used to plot
the distributions is similar to the one described to calculate
the averages but, in order not to have problems with disper-
sion of the trajectories from neighboring regions in phase
space att=0, we do the calculation backwards in time,
choosing the grid at any instant of timet and evolving the
points using the inverse map to find the probability of the
inverse image of this point att=0.

From Fig. 2 one can identify the inner structure present in
Fig. 1. The whole web structure would be visible if there
were a larger number of kicks.

B. Dissipative case

The dynamics of the kicked oscillator change if a dissipa-
tion mechanism is introduced. In our model this can be
achieved by modifying the equation of motion between the
kicks, Eq. (2), with the addition of a friction term propor-
tional to the velocity,

ẍ + n2x + Gẋ = 0, s8d

whereG is the dissipation rate. The discrete map obtained by
integration of Eq.(8) and use of the shift in momentum, Eq.
(3), is

xn+1 = e−Gt/2Hcossādxn +
sinsād
m V

fpn + Ak sinskxndgJ ,

s9ad

pn+1 = e−Gt/2h− mV sinsādxn + cossādfpn + Ak sinskxndgj,

s9bd

where

V = În2 − G2/4,

pn/m= ẋ + Gx/2, s10d

ā = Vt.

We again perform a change to dimensionless variablesv8
andu8, so that now

v8 = kx,
s11d

u8 = kp/mV,

and

FIG. 1. Stroboscopic plot forq=6 andK=2.0, showing some
stable islands as well as the stochastic web that forms hexagonal
symmetry in the unbounded phase space.

FIG. 2. (Color online) Classical probability distribution forq
=6 andK=2.0 after zero(a), three(b), six (c) and nine(d) kicks.
The same structure of the trajectory-based stroboscopic map as that
in (Fig. 1) is shown. After nine kicks only the central structure is
visible. The whole web structure would be seen if there were a
larger number of kicks.
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vn+18 = e−Gt/2hcossādvn8 + sinsādfun8 + K8 sinsvn8dgj,

s12ad

un+18 = e−Gt/2h− sinsādvn8 + cossādfun8 + K8 sinsvn8dgj,

s12bd

whereK8=Ak2/mV.
There are new scenarios that arise from the addition of

dissipation depending on the values ofK8 and Gt. When
one of these parameters is changed, the system may change
from periodic to chaotic motion in a sequence of period-
doubling bifurcations[28]. In Fig. 3 we show this sequence
and also the average Lyapunov exponent forK8=6.0 and
Gt /2 varying from 0 to 1. For the bifurcation diagram we
iterated the map, Eqs.(12), for 106 steps and plotted the last
103 points that correspond to theu variable on the vertical
axis. The Lyapunov exponent is averaged over 104 different
initial conditions equally distributed around the origin, tak-
ing into account the same initial probability distribution as in
Fig. 2. For each trajectory the exponent is calculated using
the procedure described in Ref.[29] for 106 iterations. One
can clearly identify the periodic regions corresponding to
non-positive Lyapunov exponents and the chaotic ones
where the system goes to strange attractors like the one
shown in Fig. 4.

C. Diffusive case

Another kind of external disturbance that can affect the
oscillator dynamics is diffusion generated by noise due, for
example, to fluctuating forces that act on the system. One
possible mathematical description for the evolution of the
probability distribution between two consecutive kicks is the
Fokker–Planck equation,

] P

] t
= nu

] P

] v
− nv

] P

] u
+ DS ]2P

] v2 +
]2P

] u2D . s13d

The first two terms describe the harmonic evolution while
the third accounts for diffusion, in bothv andu, with diffu-
sion coefficientD. This diffusive term has two different ef-
fects on the system’s dynamics. First, noise limits the devel-
opment of small-scale structures in phase space generated by
the nonlinear dynamics, thereby smoothing out the probabil-
ity distribution. While stretching of the distribution tends to
generate thin structures in phase space, noise will tend to
counterbalance this effect, leading to a lower limit in the
width of such structures which will depend on both the non-
linearity parameter and the strength of the noise[12]. The
second effect is a faster spread of the system over phase
space. In fact, the diffusion produced by noise adds a new
mechanism for connecting different parts of the web, thus
enhancing the original chaotic diffusion.

III. QUANTUM DYNAMICS: QUANTUM d-KICKED
HARMONIC OSCILLATOR

A. System without a reservoir

The quantum Hamiltonian for thed-kicked harmonic os-
cillator is given by replacing in Eq.(1) the variablesx andp
by operators,

Ĥ =
p̂2

2m
+

mn2x̂2

2
+ "Kq cosskx̂do

n

`

dst − ntd, s14d

where we have definedKq=A/".
It was shown in Ref.[20] that this model describes the

center-of-mass motion of an ion in a one-dimensional har-
monic trap subjected to a sequence of standing-wave laser
pulses, off-resonant with respect to a transition between the
ground state and another electronic level. In this off-
resonance condition the excited state is negligibly populated
and can be eliminated adiabatically. The result of this elimi-
nation is an equation that describes just the motional dynam-
ics subject to recoil associated to incoming laser pulses.

FIG. 3. Average Lyapunov exponentl (solid line) and bifurca-
tion diagram(dots) as a function of the dissipation parameterGt /2
for K8=6.0 andq=6. The horizontal line atu=0 was plotted as a
reference for the Lyapunov exponent. For the bifurcation diagram,
the vertical axis corresponds to the last 103 points of u after 106

iterations of the map, Eqs.(12). We only show the region from −2
to 2 for clarity. The arrow refers to the case plotted in Fig. 4.

FIG. 4. Strange attractor obtained from the map, Eqs.(12), for
q=6, K8=6.0 andGt /2=0.36 corresponding to a Lyapunov expo-
nent of 0.697 in Fig. 3(denoted by an arrow there).
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In terms of the annihilation and creation operatorsâ and
â† for the harmonic oscillator,

â = Îmn/2"x̂ + iÎ1/2"mnp̂, s15d

the above Hamiltonian can be written as

Ĥ = "nâ†â + "Kq cosfhsâ + â†dgo
n

`

dst − ntd, s16d

where

h = kÎ"/2mn s17d

is a scaling parameter related to the macroscopic limit, the
so-called Lamb–Dicke parameter[30]. This parameter can be
expressed ash=2pDx0/l, where Dx0 is the width of the
ground state of the harmonic oscillator,andl=2p /k is the
wavelength of the kicking force. This is the classicality pa-
rameter for the model under consideration. Its square is seen
to be the ratio between" and the action 2mn /k2, and it plays
the role of dimensionless parameter"eff mentioned in Sec. I.
The limit h→0 can be achieved by lettingk→0. This pa-
rameter can be easily changed in ion trap experiments by
varying the direction of the kicking laser pulses with respect
to the trap axis, sincek stands, in this case, for the projection
of the lasers wave vectors on the trap axis.

In terms ofh, we can write

kâl =
1

2h
sv + iud ; sv̄ + iūd, s18d

Kq =
K

2h2 , s19d

where Eqs.(5), (15), and (17) were used. While the classi-
cality parameterh appears naturally in the quantum model
when it is expressed in terms of the annihilation and creation
operators, it may also be introduced classically by using the
new variablesv̄ andū, which yield the following scaled map:

v̄n+1 = cossadv̄n + sinsadFūn +
K

2h
sins2hv̄ndG , s20ad

ūn+1 = − sinsadv̄n + cossadFūn +
K

2h
sins2hv̄ndG .

s20bd

On the quantum level, the evolution dictated by Eq.(16)
can be written as a map that connects the state of the system
before each consecutive kick as

ucln+1 = ÛhÛkucln=e−intâ†âe−iKq cosfhsâ+â†dgucln, s21d

where Ûh and Ûk are, respectively, the evolution operators
for the harmonic oscillator and for the kicks.

B. Open system: Influence of environment

The influence of the environment on the system can be
described by the master equation,

dr̂

dt
= −

i

"
fĤ,r̂g + Lr̂, s22d

wherer̂ is the reduced density operator of the system in the
interaction picture. The first term on the right-hand side of
Eq. (22) corresponds to the unitary dynamics while the sec-
ond term represents the nonunitary effect of the environment
in Lindblad form,

Lr̂ ; o
i

sgi/2ds2ĉir̂ĉi
† − ĉi

†ĉir̂ − r̂ĉi
†ĉid. s23d

Operatorsĉi are related to the form of system-environment
coupling and constantsgi measure the strength of the cou-
pling.

Equation(23) is frequently found in a description of dis-
sipative systems. It can be derived under very general as-
sumptions, namely, “Markovicity” and complete positivity of
the time evolution of the reduced density operator of the
system[31,32]. This latter condition is defined in the follow-
ing way. LetA be the system for which the reduced density
operator is defined,HA the corresponding Hilbert space, and
LA the time-evolution map for the reduced density operator
r. Consider any possible extension ofHA to the tensor prod-
uct HA ^ HB, whereHB is any arbitrary Hilbert space; then
LA is completely positive onHA if LA ^ IB is positive for all
such extensions. Complete positivity corresponds to the
statement that, if systemA evolves and systemB does not,
any initial density matrix of the combined system evolves
into another density matrix.

In trapped ions one can use the technique of “reservoir
engineering”[21–23] to build different kinds ofĉi operators
for center-of-mass motion of the ion, and, in particular, the
dissipative and diffusive reservoirs discussed previously in
the context of classical dynamics.

1. Dissipative case

Dissipation by a zero-temperature reservoir in the weak
coupling limit sG!nd and in the rotating-wave approxima-
tion is described by Eq.(22) using just one operator,ĉ1; â,

dr̂

dt
= −

i

"
fĤ8,r̂g +

G

2
s2âr̂â† − â†âr̂ − r̂â†âd, s24d

whereĤ8 has the same form asĤ given by Eq.(16), with n
replaced by the frequencyV given by Eq.(10). We will see
that, with this choice, the oscillation frequencies of the quan-
tum and classical systems will coincide.

From master equation(24), one gets the equations of mo-
tion for the expectation values between kicks:

kȧ̂l = Trsâṙ̂d = − iVkâl −
G

2
kâl, s25d

which can be written in terms ofx̂ and p̂ as

kẋ̂l =
kp̂l
m

−
G

2
kx̂l, s26d

kṗ̂l = − mV2kx̂l −
G

2
kp̂l. s27d
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One should note that, different from classical equations of
motion, dissipation appears here in a symmetric way with
respect to position and momentum. This is related to the
rotating-wave approximation, adopted in deriving Eq.(24):
this approximation requires that the oscillator undergoes
many oscillations within the decay time(that is, one should
haveG!n), which implies that effect of dissipation gets dis-
tributed between the canonical coordinates.

Taking the derivative of Eq.(26) and using Eq.(27) one
gets

kẍ̂l + SV2 +
G2

4
Dkx̂l + Gkẋ̂l = 0. s28d

Using Eq.(10), we can see that this equation that describes
the quantum dynamics between kicks is identical to its clas-
sical version, Eq.(8), so the quantum and the classical sys-
tems oscillate with the same frequency.

2. Diffusive case

The purely diffusive reservoir master equation can be ob-
tained from Eq.(22) by choosing two operators,ĉ1= â and
ĉ2= â†, with the same rate,g1=g2=g,

ṙ̂ =
g

2
fs2âr̂â† − â†âr̂ − r̂â†âd+ s2â†r̂â − ââ†r̂ − r̂ââ†dg.

s29d

This is a combination of cooling and heating reservoirs
and due to the fact that they have the same rates, all terms
that lead to drifting are canceled out and only diffusion terms
survive. This becomes clear when one explicitly writes the
corresponding Fokker–Planck equation for the Wigner func-
tion:

] W

] t
= g

]2W

] a ] a* , s30d

or, in terms ofv̄ and ū,

] W

] t
=

g

4
S ]2

] v̄2 +
]2

] ū2DW. s31d

Equation (31) is equivalent to the third term of Eq.(13)
rewritten in terms of the rescaled variables if we setg
=D /h2.

A purely diffusive reservoir can be produced by random
electric fields[33,34] and it is known to model heating of the
vibrational energy observed in recent experiments on ion dy-
namics[22].

IV. RESULTS

The classical description of a chaotic dynamical system,
either using single trajectories or a probability distribution, is
based on the analysis of phase space and its structures. The
definition of a single trajectory in the quantum case is pre-
vented by the uncertainty principle so a suitable description
of the system is based on quasiprobability distributions. The
Wigner function fulfills almost all the requirements for being

a true probability distribution, as it is the only quantum dis-
tribution that yields the correct marginal distributions for any
direction of integration in phase space, however it can ex-
hibit negative values. For our purposes, this turns out to be
an advantage, because it highlights the differences between
quantum and classical dynamics. As a matter of fact, it is
much easier to detect quantum signatures with the Wigner
distribution than with the Husimi orQ functions.

Oscillations between negative and positive values in the
Wigner function are a sign of the existence of quantum in-
terference phenomena, which are absent in its classical coun-
terpart. The role played by decoherence in washing out in-
terference patterns is also easily visualized in the Wigner
function [15]. More than a visualization tool, the Wigner
function can be useful to derive some analytical results con-
cerning the quantum-classical limit.

In what follows we make use of the Wigner function and
of its Fourier transform, the characteristic function, to obtain
new results concerning time scales for the quantum-classical
transition. By combining the interaction with the environ-
ment and the possibility of varying the effective Planck con-
stant, we are able to discuss not only the regions of param-
eters for the classical limit but also the behavior of breaking
time in open systems.

A. System without a reservoir

In the absence of interaction with the environment, the
classical limit is investigated by changing the scaling param-
eterh. One should mention that, in terms of the variablesū
and v̄, the initial distribution does not depend onh, and is
taken to be the same for the classical and quantum systems.
Of course, in terms of the original variablesu andv, decreas-
ing h leads to shrinkage in the width of the initial distribu-
tion in both the classical and the quantum situations. In any
case, changingh will affect both the classical and quantum
solutions, since the initial states are always taken to coincide,
and a broader initial packet will explore, from the beginning,
a larger region of phase space.

In Fig. 5 we show the Wigner function forh=0.5 (top)
and 0.1(bottom) after nine kicks, corresponding to, respec-
tively, the classical situation depicted in Fig. 2(d) and its
scaled version(not shown). By decreasing the value of the
effective Planck constant one gets a quantum phase space
that resembles more and more the overall classical structure
but still with the presence of interference patterns.

After some time these differences between quantum and
classical evolutions become important and estimates can be
made using the characteristic functionCsl ,l*d, defined as

Csl,l*d = Trfr̂elâ†−l* âg. s32d

Expanding the exponential of the cosine function in the
quantum map, Eq.(21), in terms of Bessel functions, it is
possible to explicitly write the characteristic function after
the nth kick in terms of its initial value,C0sln,ln

*d, as[18]

Cnsl,l*d = o
m1,. . .,mn=−`

`

Jm1
sz1dJm2

sz2d . . .Jmn
szndC0sln,ln

*d,

s33d

where
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lk = lk−1e
ia + imkh, s34ad

zk = 2Kq sinsjkd =
K

h2sinsjkd, s34bd

jk = −
h

2
slk + lk

*d, s34cd

l0 ; l, s34dd

Jm are Bessel functions anda=nt, as in the classical case.
It is interesting to compare Eq.(33) with the correspond-

ing one for the classical system, which can be obtained by
introducing the classical map Eqs.(20), into the appropriate
classical definition of the characteristic function. This defini-
tion follows from the quantum expression, Eq.(32), upon
replacing the trace by a double integral, the operators by
complex numbers and the density matrix by a classical prob-
ability density. One gets then

Cn
scldsl,l*d = o

m1,. . .,mn=−`

`

Jm1
S K

h2j1D . . .Jmn
S K

h2jnD
3C0sln,ln

*d. s35d

It is clear that the classical expression is obtained from the
quantum one whenujku!1, in which case

sinsjkd < jk. s36d

Since, according to Eq.(34a), jk is proportional toh, this
approximation should hold for sufficiently smallh in the
beginning of evolution of the system. However, as time
evolves, andulku grows, it eventually ceases to be true. This
is precisely where the breakdown between classical and
quantum evolution occurs.

An expression for the breaking time can be obtained by
comparing the quantum and classical characteristic func-
tions. We define it as the time at which the approximation,
Eq. (36), fails, or, in other words, at whichjk<1. Assuming
a strong chaos conditionsK@1d, one is able to derive[18]

t" <
lns2K̄/hd

lnsK̄d
, s37d

whereK̄=K sinsad. This result displays scaling of the break-
ing time with the logarithmic of 1/h2, which stands for the
"eff

−1 already mentioned in Sec. I. A numerical check of this
expression needs an operational definition for the breaking
time, which involves, also, the choice of an appropriate mea-
sure of the distance between quantum and classical systems.
Information measures that can be used to compare two dif-
ferent distributions are available in the literature[35], and
have been applied in the context of quantum-classical tran-
sition for chaotic systems[14]. Measures based on a com-
parison between whole distributions, although more com-
plete, would lead to a large increase in computational time
and experimental difficulties. Although the Wigner function
has already been measured in experiments with trapped ions
[36], it would be challenging to resolve details of the inter-
ference fringes seen, for example, in Fig. 5(b). The relative
distance between the classicalskDv̄cl

2 ld and quantumskDv̄q
2ld

variances of the distributions, defined as

dr = U kDv̄cl
2 l − kDv̄q

2l
kDv̄cl

2 l
U , s38d

is a much simpler quantity that already shows the scaling
properties of Eq.(37). Figure 6 shows the classical and quan-
tum variances(left panels) and the relative distancedr (right
panels) as a function of the number of kicks for two different
Lamb–Dicke parameters. The separation time is defined as
the time at which the relative distance crosses a given value
e (e=0.1 in Fig. 6). In Fig. 7 we plott" obtained in this way
as a function of lns1/hd and, although the absolute value of
the breaking time depends on the choice ofe, tests withe
ranging from 5% to 30% show only slight modifications in
the curves and confirm the scaling behavior, Eq.(37), inde-
pendent of the particular definition of separation.

FIG. 5. (Color online) Wigner distribution after nine kicks for
h=0.5 (a) and 0.1(b). In both cases the Wigner function presents
negative values but as the Lamb–Dicke parameter is decreased(as it
gets closer to the classical limit) there is better correspondence with
the overall classical structure shown in Fig. 2(d).
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B. Dissipative environment

The analytical solution for the quantum dissipative prob-
lem in terms of the characteristic function is also given by
Eq. (33) and the only change affects the relation, Eq.(34a),
that must be replaced by

lk = lk−1e
iāe−Gt/2 + imkh, s39d

where G was introduced in the classical case. Besides the
usual rotation due to harmonic motion represented by the
complex exponential in Eq.(39) there is also exponential
decay due to dissipative drift in the characteristic function
argument[37].

In analogy to what was done for the system without a
reservoir, one can obtain the breaking time by examining
when the quantum characteristic function can no longer be
described by its semiclassical approximation. This procedure
is fully described in Appendix A and the results are summa-
rized in Table I. The first column in Table I represents a
region characterized by a deep quantum regime where a clas-
sical description of the system is already not valid right after
the first kick, for all finite values of the dissipation. It is
interesting to note that, in this region, quantum-classical cor-
respondence is lost even if dissipation is sufficient to bring
the classical system into a periodic regime.

In the second column in Table I we have the most inter-
esting range of parameters for the quantum-classical transi-
tion (we call it the “weak quantum regime”), where two dif-
ferent regimes exist: one indicates an increase of the
breaking time with dissipation, and the other showing close
quantum-classical behavior for all timesst"→`d. This latter
case corresponds to a situation where dissipation is so strong
that classical chaos is suppressed and the system goes to a
simple attractor. The breaking time for region(c) in Table I,

t"
dis <

lns2K8̄/hd

lnsK8̄d − Gt/2
, s40d

with K8̄=K8 sinsād, increases as dissipation coefficient
grows, but it keeps the same logarithmic-scale dependence
with respect to the effective Planck constant as in the case
without a reservoir.

Although t"
dis can be arbitrarily large, as pointed out by

Iomin and Zaslavsky[23] in recent derivation of an expres-
sion similar to Eq.(40), this is not the case if one wants to

preserve a strange attractor. The conditionGt /2= lnsK8̄d,
which separates regions(c) and(d) in Table I, corresponds to
the situation where the origin of phase space changes from
an unstable point to a stable fixed point. However, instability
of the origin is not sufficient to ensure chaotic dynamics.
Indeed, Fig. 3 exhibits a large range of values ofGt /2 for
which the system is attracted to some periodic trajectory,
even whenGt /2, lnsKd.

The ratio between the breaking times with and without
dissipation is given by

FIG. 6. Classical and quantum variances(left panels) and the
relative distancedr (right panels) as a function of the number of
kicks for h=0.5 (top) and 0.1 (bottom). The quantum variance
(solid line) remains close to the classical(dashed line) for a longer
time when the Lamb–Dicke parameter is smaller. The breaking
time, indicated by arrows, corresponds to the instant at which the
relative distance gets larger than a chosen value,e=0.1 (horizontal
line in the right panels).

FIG. 7. Breaking time as a function of lns1/hd for K=2.0 and
q=6. Despite the oscillations there is clear linear behavior, thus
confirming the scaling predicted by Eq.(37).

TABLE I. Breaking time for dissipative dynamics in four differ-

ent regions of parametersGt /2, h andK8̄.

Nonlinearity Deep quantum Weak quantum

strength regime regime

Gt /2, lnsh /2d Gt /2. lnsh /2d

lnsK8̄d . Gt/2 sad t" < 1 kick scd t" <
lns2K8̄/hd

lnsK8̄d − Gt/2

lnsK8̄d,Gt /2 (b) t"<1 kick (d) t"→`
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t"
dis

t"

<
lnsK8̄d

lnsK8̄d − Gt/2
. s41d

This expression exhibits the increase of breaking time as a
function ofGt. In Fig. 8 this relation is plotted together with
numerical simulations forK8=6.0 with the horizontal axis
ending at the valuesGt /2dmax<0.51 of the dissipation con-
stant, for which the Lyapunov exponent becomes negative
(see Fig. 3). For this value of kicking strength the maximum
increase in breaking time is around 1.5 and therefore it does
not help considerably in achieving the classical limit. This
increase depends on the values of the chaoticity parameter
but even for very large valuessK8<500d it is less than a
factor of 4.

Although expression(41) is independent of scaling pa-
rameterh, some remarks about the role played by the mac-
roscopic limit in the dissipative case are needed. It should be
noted that the quantum description of a zero-temperature res-
ervoir given by Eq.(24) is not completely equivalent to the
classical description based on the map, Eqs.(12). In fact, a
classical distribution subjected to only dissipative dynamics
would shrink to a point located at the origin, while a quan-
tum distribution would end up in the ground state, which has
a finite width due to the uncertainty principle. This argument
does not invalidate the results presented in Table I, but in-
stead emphasizes that they are valid for the semiclassical
approximation that is not equivalent to the fully classical
system based on the map, Eqs.(12).

This also provides an explanation for the deviations be-
tween numerical and analytical results shown in Fig. 8. Only
in a small range of dissipation strengths0.12&Gt /2
&0.22d were we able to see the expected growth in breaking
time, while for larger values ofGt /2, the effects of the dif-
ference between classical and quantum systems, discussed
above, become dominant.

It is interesting to note the sudden growth in breaking
time for the region corresponding to the periodic window
aroundGt /2=0.4 shown in Fig. 3. This should be expected,
since quantum and classical systems should stay together for
a longer time outside the chaotic region. On the other hand,
asGt increases, inside the same region, one notices that the
breaking time decreases. This is due to the fact that, for
larger dissipation, the distribution shrinks at a faster rate,
implying that the two distributions approach at an earlier
time the region around the origin, where the uncertainty prin-
ciple plays a dominant role.

For smaller values of dissipation parameter, the system
could spread over a large region of phase space and require a
huge amount of computational resources. This, together with
reliability problems for even smaller values ofGt /2, im-
posed the limitGt /2*0.12 for the dissipation parameter in
our calculations.

It is important to understand the meaning of breaking time
and its consequences for dynamics of the system at different
times. In particular, the stationary state produced by dissipa-
tion is of much interest and this issue of long time behavior
has been addressed before in the case of the standard map
[8]. The existence of finitet" means that quantum and clas-
sical dynamics cannot be equivalent for all times but does
not necessarily mean that they have to be different for all
t.t". In fact, numerical simulations for the evolution of
variance of the dissipative KHO show that, in some cases,
quantum and classical calculations show the same final sta-
tionary behavior but with different transient regimes as can
be seen in Fig. 9. One should note, however, that this is not
necessarily true for the whole phase space distributions,
which can be different, although they have the same second
moments. This can be illustrated through a comparison of the
Wigner function depicted in Fig. 10 and the strange attractor
shown in Fig. 4. The quantum distribution clearly does not
exhibit all the structures presented in the classical case de-
spite the fact that it lies in the region that contains the clas-
sical attractor.

FIG. 8. Ratio between the breaking time with and without dis-
sipation as a function ofGt for the same parameters as in Fig. 3 and
h=0.5. The solid line shows the analytical prediction, Eq.(41),
while triangles show numerical simulations that compare quantum
and classical systems. The differences between quantum and clas-
sical environments are responsible for the deviations observed for
larger values ofGt. Smaller values ofGt were not considered due
to numerical constraints.

FIG. 9. Classical(dashed line) and quantum(solid line) evolu-
tion of kDv̄2l as a function of the number of kicksN for K8=6.0 and
Gt /2=0.36. Classical and quantum variances show the same
asymptotic behavior despite the fact that they can differ in a tran-
sient regime.
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C. Diffusive environment

Evolution of the system under the influence of the diffu-
sive environment can be solved analytically in terms of the
characteristic function, described in Appendix B. The solu-
tion between consecutive kicks can be written as

Csl,l* ,td = Csl,l* ,0de−gulu2t. s42d

Using this solution together with Eq.(33), we can establish a
recurrence relation for the characteristic function after the
nth kick to be

Cnsl,l*d = e−gulu2t o
m1=−`

`

Jm1
sz1dCn−1sl1,l1

*d, s43d

with all the variables defined the same as in Eq.(34).
While in the dissipative case the drift effect adds an ex-

ponential factor to arguments of the Bessel functions, in this
case, a Gaussian multiplies the whole sum. This difference is
crucial to understanding the influence of this environment in
restoring the quantum-classical correspondence. First, one
should note that the role played by the Lamb–Dicke param-
eter in the above expressions is the same as in the case of a
system without a reservoir and, therefore, the macroscopic
approximation would lead to the same result as before. It is
clear, however, that diffusion should have an important effect
on the behavior of the system. This can be seen through a
more careful analysis of expression(43).

Assume that quantum and classical dynamics coincide at
kick n and forget, for the moment, diffusion. As discussed
before, the two dynamics will differ as long as the approxi-
mation sinsjd<j fails. This gives an estimate of the values
of j1 that lead to quantum corrections,

uj1u = Uh

2
sl1 + l1

*dU * 1. s44d

This equation shows that quantum corrections are associated
with large values ofl and we can define typical valueslT for
which the corrections appear as

ulTu ; uRsleiadu *
2

h
. s45d

The effect of diffusion is to cut off contributions from large
values ofl, due to Gaussian modulation in Eq.(42). This
implies that the values ofl that satisfy Eq.(45) may be
attenuated by the Gaussian prefactor, which renders them
inefficient in promoting quantum-classical separation.

This may become more intuitive if we go back from the
characteristic to the Wigner function: because they are re-
lated by a Fourier transform, the larger values of the charac-
teristic function correspond to the small-scale interference
structures in the Wigner function and thus to quantum cor-
rections. The disappearance of these small-scale structures,
due to Gaussian modulation of the characteristic function,
has been extensively discussed in the literature[11–15]: it
leads to better correspondence between quantum and classi-
cal distributions, and to emergence of the classical world
[38]. Figure 11 shows, for two different Lamb–Dicke param-
eters, classical and Wigner distributions in the presence of
diffusion. These distributions are much more similar to each
other than the corresponding distributions for the system
without a reservoir displayed in Fig. 5. The importance of

FIG. 10. (Color online) Wigner function for the same param-
eters of the strange attractor in Fig. 4 andh=0.5. The quantum
distribution, although lying in the region of the classical attractor,
does not show classical small-scale structures.

FIG. 11. (Color online) Classical(top panels) and Wigner(bot-
tom panels) distributions forK=2.0, D=0.010 47 andh=0.5 (left
panels) or h=0.1 (right panels). Diffusion leads to better quantum-
classical correspondence compared to that in Fig. 5. Forh=0.1 this
correspondence is quite impressive while forh=0.5 differences still
remain. Diffusion also prevents the appearance of small-scale struc-
tures on classical dynamics(top).
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diffusive effects will depend, however, on the value of the
effective Planck constant, as can be seen by comparing the
impressive correspondence between quantum and classical
distributions forh=0.1 (right panels) and some evident dif-
ferences that persist forh=0.5 (left panels).

Although it is hard to precisely define the value of diffu-
sion needed to restore the classical limit, a rough estimate
can be obtained as follows: if the values oflT, given by Eq.
(45) lie outside the range defined by the width of the Gauss-
ian, then the corrections should remain small. Using Eq.
(45), this conditions reads

2

h
*

1

2ÎD
, s46d

whereD;gt /2 plays the role of a dimensionless diffusion
coefficient for the renormalized coordinatessū, v̄d. This
simple argument shows that there is a critical diffusion for
which the classical and quantum dynamics remain close to
each other, and that it scales as

Dcr ~ h2. s47d

In terms of the diffusion coefficient in Eq.(13), one has

Dcr ~ h4/t. s48d

This is the diffusion coefficient that corresponds to non-
renormalized variablesv andu. This result is consistent with
those found, for example, in Refs.[11] and[14]. One should
expect, however, that the strength of the nonlinearity, repre-
sented byK in our case, should play an important role in
such a scaling law. The argument leading to Eq.(47) was
based on estimation of the values ofj1 at which quantum
corrections become important, without taking into account
the size of these corrections. We have not studied in detail
the actual separation between the two distributions as they
evolve in time. That is the reason why our simple argument
could not account for the influence of nonlinearity, which is
hidden in Eq.(47). A detailed investigation of the separation
time for the diffusive case or estimation of the error intro-
duced by the neglected contributions would certainly display
this dependence. Scaling relations between effective Planck
constants, environment and nonlinearity strengths in the con-
text of the quantum-classical transition have been obtained
by many authors[7,10–13] and have motivated recent inter-
est [14] in finding the properties of such scaling.

The above considerations suggest that the breaking time
should diverge when the diffusion coefficient exceeds a cer-
tain critical valueDcr. This may be easily understood from
Fig. 12, which displays the time evolution of the relative
distance for quantum and classical variances for several val-
ues ofD. One should note that, asD becomes larger than a
critical value, which depends on the thresholde adopted for
definition of the separation time, the relative distance always
remains smaller than this threshold, implying an infinite
separation time. On the other hand, for sufficiently small
diffusion coefficients, one should recover the logarithmic
time scale. Although we were not able to derive an analytical
expression for the breaking time whenD,Dcr, our numeri-

cal simulations show that it remains practically identical to
the result obtained when no reservoir is present in this region
of parameters.

The behavior of the breaking time in a diffusive environ-
ment is shown in Fig. 13. ForD=0.010 47(top), one can see
that the breaking time basically lies on the curve that corre-
sponds to the system without a reservoir, and increases
abruptly at a given value of Lamb–Dicke parameter(h
=0.31, indicated by the arrow in Fig. 13), with some of the
oscillations, already present in theD=0 case, amplified. For
hø0.31, the breaking time experiences sudden growth; cor-
responding points are not shown(numerical tests were per-
formed for a maximum of 50 kicks up toh=0.2). For h
=0.5 (bottom), the increase in noise introduces very small
changes in the breaking time, which grows quickly when
D<0.014 66. Again the abrupt increase indicates that the
differences between quantum and classical variances remain
bounded below a given limite.

One should note, however, that the small changes in the
breaking time forD,Dcr do not imply that the environment
has no effect at all in the dynamics. In fact, by observing Fig.
12 again we see that the maximum distance between the
variances decreases smoothly with an increase in noise
strength and may eventually be zero, indicating perfect
quantum-classical correspondence. It is interesting to note
how these two different quantities, breaking time and maxi-
mum distance, give complementary information about the
dynamics.

From these results one could infer, naively, that diffusion
is sufficient to restore the classical limit for a chaotic system
no matter what the value of the effective Planck constant is.
Indeed, for a given Lamb–Dicke parameter, one can always
find a large enough diffusion coefficient to bring the quantum
and classical dynamics sufficiently close to each other. Nev-
ertheless, such a statement deserves some reservation. In
fact, diffusion washes out not only the interference pattern in
the Wigner function but also the structures in classical phase

FIG. 12. Relative difference between quantum and classical
variances as a function of the number of kicks forh=0.5 andD
equal to 0(solid line); 0.002 09(dashed line) and 0.0209(long-
dashed line). For large enoughD, the relative difference always
remains smaller than the thresholde represented by the horizontal
lines.
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space(see Fig. 11), and one could claim, therefore, that when
the critical diffusion coefficient is very large, the chaotic
characteristic of the system is lost and the system follows,
basically, diffusive dynamics induced by the environment. A
similar situation was described in the dissipative case where
large enough dissipation was sufficient to suppress chaos and
bring the system to periodic behavior. There, however, we
could clearly distinguish between chaotic and periodic be-
havior through calculation of the Lyapunov exponent, while
here, even though generalizations of Lyapunov exponents for
distributions exist[39,40], there is no sharp distinction be-
tween chaotic and regular behavior. Description of the sys-
tem can become even more complicated with the addition of
diffusion in view of the mixed phase-space structure of the
system. Difficulties in characterizing chaos lie not only in
smoothing the phase space structures[see Fig. 11(a)], but
also in the fact that the distribution can flow from regular to
chaotic regions that were well separated when no reservoirs
are taken into account.

Finally, we should remark that we have not analyzed here
long-time behavior of the system. It is well known that dif-
fusion may affect quantum localization, which occurs at
times much longer than those considered here[7–10]. In the
absence of a reservoir, the long-time dynamics of the model
analyzed in this paper may display either quantum diffusion
or ballistic behavior[16].

V. CONCLUSIONS

We have shown that it is possible to discuss separately, in
a physically relevant way, the roles of the macroscopic limit
and of different system–environment interactions in the
quantum-classical transition of a chaotic system. We have
considered the kicked harmonic oscillator coupled to two
distinct reservoirs that give rise in the classical limit to either
pure dissipation(zero-temperature reservoir) or pure diffu-
sion (random force) in a situation that could be implemented
in state-of-the-art ion trap experiments.

In the chaotic regime, when interaction with a reservoir is
not taken into account, the classical and quantum dynamics
start diverging after a time that depends logarithmically on
the ratio between a typical action of the system and the
Planck constant. We have used an operational definition of
the breaking time in terms of measurable quantities, which
allows experimental testing of this logarithmic time scale.

In the dissipative case we established regions of param-
eters that correspond to different time scales. There is a re-
gion where quantum corrections appear right after the first
kick and quantum-classical correspondence is already lost at
the beginning of evolution. By decreasing the Lamb–Dicke
parameter, one reaches a region where quantum-classical
correspondence persists for a time that, like in the system
without a reservoir, grows only logarithmically with the clas-
sicality parameter. We have also shown that, for a fixed ef-
fective Planck constant, close agreement between quantum
and classical predictions is only possible for dissipation
strengths large enough to bring the system into regular be-
havior.

In the diffusive case, we were able to establish that the
behavior of the quantum-classical separation should be
markedly different, depending on whether the diffusion co-
efficient is above or below a certain critical valueDcr. For
D.Dcr, this separation should remain small, and infinite
separation times may even be obtained, at values ofD that
depend on the definition adopted for critical percentual sepa-
ration. We have also presented numerical evidence that, for
diffusion coefficients below this limit, the breaking time be-
haves like that in the case without a reservoir. Furthermore,
we obtained an analytical estimate of the dependence of the
critical diffusion coefficient on the effective Planck constant,
which shows that the farther away from the classical limit the
system is, the larger the effect of the environment must be to
restore quantum-classical correspondence.

Although coupling with the environment helps to restore
quantum-classical correspondence for a system that is close
to the macroscopic regime, for systems in a deep quantum
region critical diffusion can be so large that it brings classi-
cality at the expense of reducing, or even extinguishing, cha-
otic features of the system.

FIG. 13. Top: Breaking time as function of lns1/hd for D
=0.010 47(triangles) and D=0 (line). The two curves are essen-
tially the same untilh<0.31(shown by the arrow) when there is no
longer any separation. Some peaks of theD=0 curve are amplified,
due, probably, to the definition of breaking time adopted. Bottom:
Breaking time as function ofD for h=0.5. The separation time
remains basically the same, with a small increase(<10% maxi-
mum), and suddenly increases forDcr<0.13.
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The behavior of the system under the influence of other
kinds of environment could also be explored in this context.
Thermal and phase reservoirs are examples of different en-
vironments, already produced in ion trap experiments, that
could be used for this, and could lead to interesting results
for the quantum-classical transition scenario.
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APPENDIX A: BREAKING TIME

It is not difficult to generalize the solutions, Eqs.(33) and
(34), which were obtained for the characteristic function cor-
responding to a system without a reservoir, to the dissipative
regime. Between two consecutive kicks the harmonic evolu-
tion just rotates the system in phase space, and this effect
appears only in the complex exponential in Eq.(34a). Solu-
tion of the dissipative master equation simply adds exponen-
tial decaye−Gt/2 [37] and, therefore, solution of the full prob-
lem is still given by Eq.(33):

Cnsl,l*d = o
m1,. . .,mn=−`

`

Jm1
sz1dJm2

sz2d . . .Jmn
szndC0sln,ln

*d,

sA1d

where

lk = lk−1e
iāe−Gt/2 + i2mkh, sA2ad

zk = 2Kq sinsjkd =
K8

h2sinsjkd, sA2bd

jk = −
h

2
slk + lk

*d, sA2cd

l0 ; l. sA2dd

The procedure to obtain the breaking time in the dissipa-
tive case follows very closely the one used in Ref.[18] for
the situation without a reservoir. First we should note that the
macroscopic limit, as discussed previously, is achieved by
letting h→0, which means that the sine functions in Eq.
(A2b) can be approximated by their argument, i.e.,

sinsjkd < jk. sA3d

In this limit, we obtain the semiclassical characteristic func-
tion,

Cnsl,l*d = o
m1,. . .,mn=−`

`

Jm1
s2Kqj1d . . .Jmn

s2KqjndC0sln,ln
*d,

sA4d

with initial condition

C0
clsl,l*d =E

−`

`

d2mP0sm,m*delnm*−ln
*m. sA5d

When no reservoir is present, the semiclassical approxima-
tion leads to the classical characteristic function derived, di-
rectly, through the corresponding classical map. Here this is
not the case, due to the fact that the zero-temperature reser-
voir leads to distinct features in the quantum and the classi-
cal models. If subjected only to the dissipative dynamics, the
quantum system will end up in its ground state, which has a
finite width, while a classical probability distribution would
contract to a point located at the origin. In this way, the
semiclassical characteristic function shows exactly the same
nonlinear dynamics as the classical but with an intrinsic
quantum property due to the uncertainty principle. Of course,
this effect becomes smaller as quantum fluctuations become
negligible compared to the size of the system, which occurs
for small values of Lamb–Dicke parameter.

The replacement of Eq.(33) by Eq. (A4) is only valid if
Eq. (A3) holds for everyk. Taking into account that the
Bessel functions decrease exponentially forumku@2Kqjk, we
can truncate the sums in Eq.(A1) by estimating the maxi-
mum values ofumku in each sum. The relevant contributions
are the ones in which the Bessel function index is of the
order of its argument and, therefore,

um1u < 2Kquj1u =
K8

2h
e−Gt/2uleiā + l*e−iāu,

um2u < 2Kquj2u =
K8

2h
uslei2ā + l*e−i2āde−2Gt/2

− 2m1h sinsāde−Gt/2u,

umnu < 2Kqujnu =
K8

2h
usleinā + l*e−ināde−nGt/2

− 2m1h sinfsn − 1dāge−sn−1dGt/2 − . . .

− 2mn−1h sinsāde−Gt/2u.

Considering now the strong chaos limitsK8@1d, we have

um1u <
K8̄

2h sinsād
e−Gt/2, . . . , umnu <

K8̄n

2h sinsād
e−nGt/2.

From the above considerations we can study the regime of
validity of the approximationujku!1 for all k. The ratio be-
tween two consecutivej is given by

ujku
ujk−1u

< K8̄e−Gt/2, sA6d

while the first argument is
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uj1u <
he−Gt/2

2
. sA7d

From Eq.(A7) we can get two different conditions on the
first argumentuj1u. If Gt /2, lnsh /2d then uj1u.1 and, right
after the first kick, the classical approximation is not valid
any longer, so quantum predictions should differ from clas-
sical ones. This corresponds to the results shown in the first
column of Table I which are represented byt"

dis<1 kick. If,
on the other hand,Gt /2. lnsh /2d and, therefore,uj1u,1,
then we have two new possibilities depending on condition
(A6).

By choosingGt /2. lnsK8̄d, the ratio between two con-
secutivej is less than one and the sequence ofjk’s decreases
with an increase ofk. Becauseuj1u,1, all the terms will be
smaller than one and quantum and classical evolutions
should stay close to each other at all timesst"

dis→`d. Nev-

ertheless, if we haveGt /2, lnsK8̄d the sequence ofjk’s in-
creases and one should expect that there is ajk for which the
condition ujku,1 is not fulfilled any longer and a breaking
time will exist. This will happen whenujku<1, which can be
expressed as

K8̄nhe−nGt/2

2K8̄
< 1. sA8d

Taking the logarithm and noting thatn, the number of kicks,
corresponds to the time in units oft, we arrive at an estimate
for the breaking time as

t"
dis ; n <

lns2K8̄/hd

lnsK8̄d − Gt/2
. sA9d

APPENDIX B: DIFFUSIVE CASE

The evolution of the symmetrically ordered characteristic
function defined in Eq.(32) is given by

Ċsl,l*d = Trfṙ̂elâ†−l* âg. sB1d

The diffusive dynamics is now introduced by the replace-

ment of ṙ̂ in the above equation by Eq.(29), which gives

Ċsl,l*d =
g

2
Trf− â†ârelâ†−l* â + 2ârâ†elâ†−l* â− râ†âelâ†−l* â

− ââ†relâ†−l* â+ 2â†râelâ†−l* â − rââ†elâ†−l* âg.

sB2d

Rewriting the exponentials using the Baker–Hausdorff for-
mula and ordering properties,

e−bâ†
fsâ,â†debâ†

= fsâ + b,â†d, sB3ad

ebâfsâ,â†de−bâ = fsâ,â† + bd, sB3bd

we obtain

Ċsl,l*d =
g

2
Trf− 2ulu2elâ†−l* âr̂g=− Gulu2Csl,l*d.

sB4d

This equation can be readily integrated, giving as a solution,

Csl,l* ,td = Csl,l* ,0de−gulu2t. sB5d
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